Number: Number and Place Value with Reasoning

for Excellence in the
Teaching of Mathematics

+COUNTING					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of 4, 8, 50 and 100;	count in multiples of 6, 7, 9, 25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
Spot the mistake: $5,6,8,9$ What is wrong with this sequence of numbers?	Spot the mistake: $45,40,35,25$ What is wrong with this sequence of numbers?	Spot the mistake: 50,100,115,200 What is wrong with this sequence of numbers?	Spot the mistake: $950,975,1000,1250$ What is wrong with this sequence of numbers?	Spot the mistake: $177000,187000,197000,217000$ What is wrong with this sequence of numbers?	Spot the mistake: -80,-40,10,50 What is wrong with this sequence of numbers?
True or False?					
I start at 2 and count in twos. I will say 9	I start at 3 and count in threes. I will say 13 ?	38 is a multiple of 8 ?	324 is a multiple of 9?	When I count in 10 's I will say the number 10100?	When I count backwards in 50 s from 10 I will say
		What comes next?	What comes next?		-200
What comes next?	What comes next?	936-10=926	$6706+1000=7706$	What comes next?	
$10+1=11$	$41+5=46$	$926-10=916$	$7706+1000=8706$	$646000-10000=636000$	True or False?
$11+1=12$	$46+5=51$	916-10=906	$8706+1000=9706$	$636000-10000=626000$	The temperature is -3. It
$12+1=13$	$51+5=56$		$626000-10000=616000$	gets 2 degrees warmer.
........	The new temperature is 5?

Number: Number and Place Value with Reasoning

Teaching of Mathematics

COMPARING NUMBERS					
use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100 ; use $<,>$ and $=$ signs	compare and order numbers up to 1000	order and compare numbers beyond 1000	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
			compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)		
Do, then explain	Do, then explain	Do, then explain 835535538388508	Do, then explain 5035505353505530	Do, then explain	Do, then explain
collection). Are there	If you wrote these	If you wrote these	5503	774077744444	in five countries.
more of one type than another?	numbers in order starting with the smallest, which	numbers in order starting with the smallest, which	If you wrote these numbers in order starting	If you wrote these numbers in order starting with the	Order the populations starting with the largest.
How can you find out?	number would be third? Explain how you ordered the numbers.	number would be third? Explain how you ordered the numbers.	with the largest, which number would be third? Explain how you ordered the numbers.	smallest, which number would be third? Explain how you ordered the numbers.	Explain how you ordered the countries and their populations.
		IDENTIFYING, REPRESENT	NG AND ESTIMATING NUM		
identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		

Number: Number and Place Value with Reasoning

National Centre
for Excellence in the

READING AND WRITING NUMBERS (including Roman Numerals					
read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24hour clocks (copied from Measurement)	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Comparing Numbers) read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
UNDERSTANDING PLACE VALUE					
	recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a threedigit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
			find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions)		identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places (copied from Fractions)
	Do, then explain Show the value of the digit 2 in these numbers? $32 \quad 27 \quad 92$ Explain how you know.	Do, then explain Show the3 value of the digit 3 in these numbers? 341503937 Explain how you know.	Do, then explain Show the value of the digit 4 in these numbers? 304143215497 Explain how you know.	Do, then explain Show the value of the digit 5 in these numbers? 350114567432985376 Explain how you know.	Do, then explain Show the value of the digit 6 in these numbers? 678755595467754 Expalin how you know.

Number: Number and Place Value with Reasoning

	Make up an example Create numbers where the units digit is one less than the tens digit. What is the largest/smallest number?	Make up an example Create numbers where the digit sum is three. Eg 120, 300, 210 What is the largest/smallest number?	Make up an example Create four digit numbers where the digit sum is four and the tens digit is one. Eg 1210, 2110, 3010 What is the largest/smallest number?	Make up an example Give further examples Create six digit numbers where the digit sum is five and the thousands digit is two. Eg 30020002102000 What is the largest/smallest number?	Make up an example Create seven digit numbers where the digit sum is six and the tens of thousands digit is two. Eg 4020000 What is the largest/smallest number?
ROUNDING					
			round any number to the nearest 10, 100 or 1000	round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000	round any whole number to a required degree of accuracy
			round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)
			Possible answers A number rounded to the nearest ten is 540 . What is the smallest possible number it could be? What do you notice? Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Can you suggest other numbers like this?	Possible answers A number rounded to the nearest thousand is 76000 What is the largest possible number it could be? What do you notice? Round 343997 to the nearest 1000. Round it to the nearest 10000. What do you notice? Can you suggest other numbers like this?	Possible answers Two numbers each with two decimal places round to 23.1 to one decimal place. The total of the numbers is 46.2 . What could the numbers be? What do you notice? Give an example of a six digit number which rounds to the same number when rounded to the nearest 10000 and 100000

Number: Number and Place Value with Reasoning

Number: Addition and Subtraction with Reasoning

NUMBER BONDS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Continue the pattern $\begin{aligned} & 10+8=18 \\ & 11+7=18 \end{aligned}$ Can you make up a similar pattern for the number 17? How would this pattern look if it included subtraction? Missing numbers $\begin{aligned} & 9+\square=10 \\ & 10-\square=9 \end{aligned}$ What number goes in the missing box?	Continue the pattern $\begin{aligned} & 90=100-10 \\ & 80=100-20 \end{aligned}$ Can you make up a similar pattern starting with the numbers 74, 26 and 100? $\begin{aligned} & \text { Missing numbers } \\ & 91+\square=100 \\ & 100-\square=89 \end{aligned}$ What number goes in the missing box?				

Number: Addition and Subtraction with Reasoning

MENTAL CALCULATION					
add and subtract onedigit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
Working backwards Through practical games on number tracks and lines ask questions such as "where have you landed?" and "what numbers would you need to throw to land on other given numbers?" What do you notice? $\begin{aligned} & 11-1=10 \\ & 11-10=1 \end{aligned}$ Can you make up some other number sentences like this involving 3 different numbers?	True or false? Are these number sentences true or false? 73 $\begin{aligned} & +40=113 \\ & 98-18=70 \\ & 46+77=123 \\ & 92-67=35 \end{aligned}$ Give your reasons. Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 23+10= \\ & 93+10= \\ & 54+9= \\ & 54+1= \end{aligned}$ Explain why you think the hard questions are hard?	True or false? Are these number sentences true or false? $597+7=614$ $804-70=744$ $768+140=908$ Give your reasons. Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 323+10= \\ & 393+10= \\ & 454-100= \\ & 954-120= \end{aligned}$ Explain why you think the hard questions are hard?	True or false? Are these number sentences true or false? $6.7+0.4=6.11$ $8.1-0.9=7.2$ Give your reasons. Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 13323-70= \\ & 12893+300= \\ & 19354-500= \\ & 19954+100= \end{aligned}$ Explain why you think the hard questions are hard?	True or false? Are these number sentences true or false? $6.17+0.4=6.57$ $8.12-0.9=8.3$ Give your reasons. Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213323-70= \\ & 512893+300= \\ & 819354-500= \\ & 319954+100= \end{aligned}$ Explain why you think the hard questions are hard?	True or false? Are these number sentences true or false?6.32+ $\square=8$ \square $=1.68$ Give your reasons. Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213323-70= \\ & 512893+37= \\ & 8193.54-5.9= \end{aligned}$ Explain why you think the hard questions are hard?

Number: Addition and Subtraction with Reasoning

Teaching of Mathematics

	Other possibilities $\square+\square+\square=14$			
	What single digit numbers could go in the boxes? How many different ways can you do this?			
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot		use their knowledge of the order of operations to carry out calculations involving the four operations	

Number: Addition and Subtraction with Reasoning

National Centre
for Excellence in the

Teaching of Mathematics

Number: Addition and Subtraction with Reasoning

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{WRITTEN METHODS} \\
\hline read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation) \& \& add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction \& add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate \& add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) \& \\
\hline \begin{tabular}{l}
Convince me In my head I have two odd numbers with a difference of 2. What could they be? Convince me \\
Missing numbers \\
Fill in the missing numbers (using a range of practical resources to support)
\[
\begin{aligned}
\& 12+\square=19 \\
\& 20-\square
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
Convince me \\
What digits could go in the boxes?
\[
7 \square-2 \square=46
\] \\
Try to find all of the possible answers. \\
How do you know you have got them all? \\
Convince me
\end{tabular} \& \begin{tabular}{l}
Convince me

\square $+$ \square $+$ \square
\square

The total is 201 Each missing digit is either a 9 or a 1. Write in the missing digits. Is there only one way of doing this or lots of ways?

Convince me

 \&

Convince me
\square

$$
-666=8
$$

\square 5

What is the largest possible number that will go in the rectangular box?

What is the smallest? Convince me

 \&

Convince me
\square

$$
+1475=6
$$

\square 24

What numbers go in the boxes?

What different answers are there?

Convince me

 \&

Convince me

Three four digit numbers total 12435.

What could they be? Convince me
\end{tabular}

\hline
\end{tabular}

Number: Addition and Subtraction with Reasoning

Teaching of Mathematics

INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS					
	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
Making an estimate Pick (from a selection of number sentences) the ones where the answer is 8 or 9 . Is it true that? Is it true that $3+4=4+$ 3 ?	Making an estimate Which of these number sentences have the answer that is between 50 and 60 $74-13 \quad 55+17 \quad 87-34$ Always, sometimes, never Is it always, sometimes or never true that if you add three numbers less than 10 the answer will be an odd number	Making an estimate Which of these number sentences have the answer that is between 50 and 60 174-119 333-276 932-871 Always, sometimes, never Is it always, sometimes or never true that if you subtract a multiple of 10 from any number the units digit of that number stays the same. Is it always, sometimes or never true that when you add two numbers together you will get an even number	Making an estimate Which of these number sentences have the answer that is between 550 and 600 $\begin{aligned} & 1174-611 \\ & 3330-2779 \\ & 9326-8777 \end{aligned}$ Always, sometimes, never Is it always sometimes or never true that the difference between two odd numbers is odd.	Making an estimate Which of these number sentences have the answer that is between 0.5 and 0.6 11.74-11.18 $33.3-32.71$ Always, sometimes, never Is it always, sometimes or never true that the sum of four even numbers is divisible by 4.	Making an estimate Circle the number that is the best estimate to 932.6-931.05 $\begin{array}{llll} 1.3 & 1.5 & 1.7 & 1.9 \end{array}$ Always, sometimes, never Is it always, sometimes or never true that the sum of two consecutive triangular numbers is a square number

Number: Addition and Subtraction with Reasoning

PROBLEM SOLVING					
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
	solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)				Solve problems involving addition, subtraction, multiplication and division

Number: Multiplication and Division with Reasoning

MULTIPLICATION \& DIVISION FACTS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of $4,8,50$ and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
	Missing numbers $10=5 x$ \square What number could be written in the box? Making links I have 30p in my pocket in 5 p coins. How many coins do I have?	Missing numbers $24=\square \times \square$ Which pairs of numbers could be written in the boxes? Making links Cards come in packs of 4. How many packs do I need to buy to get 32 cards?	Missing numbers $72=\square \times \square$ Which pairs of numbers could be written in the boxes? Making links Eggs are bought in boxes of 12.1 need 140 eggs; how many boxes will I need to buy?	Missing numbers $\begin{aligned} & 6 \times 0.9=\square \times 0.03 \\ & 6 \times 0.04=0.008 \times \square \end{aligned}$ Which numbers could be written in the boxes? Making links Apples weigh about 170 g each. How many apples would you expect to get in a 2 kg bag?	Missing numbers $2.4 \div 0.3=\square \times 1.25$ Which number could be written in the box? Making links
MENTAL CALCULATION					
		write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers

Number: Multiplication and Division with Reasoning

| | | two-digit numbers times
 one-digit numbers, using
 mental and progressing to
 formal written methods
 (appears also in Written
 Methods) | together three numbers | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Number: Multiplication and Division with Reasoning

	Write the division sentences.	$\begin{aligned} & 40 \times 6= \\ & 20 \times 6= \\ & 24 \times 6= \end{aligned}$			
WRITTEN CALCULATION					
	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or twodigit number using a formal written method, including long multiplication for twodigit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
				divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
					use written division methods

Number: Multiplication and Division with Reasoning

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& \& \& in cases where the answer has up to two decimal places (copied from Fractions (including decimals)) \\
\hline \begin{tabular}{l}
Practical \\
If we put two pencils in each pencil pot how many pencils will we need?
\end{tabular} \& \begin{tabular}{l}
Prove It \\
Which four number sentences link these numbers? 3, 5, 15? Prove it.
\end{tabular} \& \begin{tabular}{l}
Prove It \\
What goes in the missing box? \\
Prove it. \\
How close can you get?

$$
\times
$$

\square

Using the digits 2, 3 and 4 in the calculation above how close can you get to 100 ? What is the largest product? What is the smallest product?

 \&

Prove It

What goes in the missing box?

$$
6 \square \times 4=512
$$

Prove it.

How close can you get?
\square

\square X 7

Using the digits 3, 4 and 6 in the calculation above how close can you get to 4500? What is the largest product? What is the smallest product?

 \&

Prove It

What goes in the missing box?

$$
\begin{aligned}
& 12 \square 2 \div 6=212 \\
& 14 \square 4 \div 7=212 \\
& 22 \square 3 \div 7=321 \mathrm{r} 6 \\
& 323 \times \square 1=13243
\end{aligned}
$$

Prove it.

 \&

Prove It

What goes in the missing box?

$$
\begin{aligned}
& 18 \square 4 \div 12=157 \\
& 38 \square 5 \div 18=212.5 \\
& 33 \square 2 \div 8=421.5 \\
& 38 \times \square .7=178.6
\end{aligned}
$$

Prove it.

Can you find?

Can you find the smallest number that can be added to or subtracted from 87.6 to make it exactly divisible by $8 / 7 / 18$?
\end{tabular}

\hline \multicolumn{6}{|c|}{PROPERTIES OF NUMBERS: MULTIPLES, FACTORS, PRIMES, SQUARE AND CUBE NUMBERS}

\hline \& \& \& recognise and use factor pairs and commutativity in mental calculations (repeated) \& identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. know and use the vocabulary of prime numbers, prime factors \& | identify common factors, common multiples and prime numbers |
| :--- |
| use common factors to simplify fractions; use common multiples to express |

\hline
\end{tabular}

Number: Multiplication and Division with Reasoning

				and composite (nonprime) numbers	fractions in the same denomination (copied from Fractions)
				establish whether a number up to 100 is prime and recall prime numbers up to 19	
				recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre ${\text { cubed (}{ }_{3} \text {) }}_{3}$ and cubic metres (m^{2}), and extending to other units such as mm_{3} and km_{3} (copied from Measures)
Spot the mistake Use a puppet to count but make some deliberate mistakes. $\text { e.g. } 2456$ 10986 See if the pupils can spot the deliberate mistake and correct the puppet	True or false? When you count up in tens starting at 5 there will always be 5 units.	True or false? All the numbers in the two times table are even. There are no numbers in the three times table that are also in the two times table.	Always, sometimes, never? Is it always, sometimes or never true that an even number that is divisible by 3 is also divisible by 6 . Is it always, sometimes or never true that the sum of four even numbers is divisible by 4 .	Always, sometimes, never? Is it always, sometimes or never true that multiplying a number always makes it bigger Is it always, sometimes or never true that prime numbers are odd. Is it always, sometimes or never true that when you multiply a whole number by 9 , the sum of its digits is also a multiple of 9 Is it always, sometimes or	Always, sometimes, never? Is it always, sometimes or never true that dividing a whole number by a half makes the answer twice as big. Is it always, sometimes or never true that when you square an even number, the result is divisible by 4 Is it always, sometimes or never true that multiples of 7 are 1 more or 1 less than prime numbers.

Number: Multiplication and Division with Reasoning

			never true that a square number has an even number of factors.	
ORDER OF OPERATIONS				
				use their knowledge of the order of operations to carry out calculations involving the four operations
				Which is correct? Which of these number sentences is correct? $\begin{aligned} & 3+6 \times 2=15 \\ & 6 \times 5-7 \times 4=92 \\ & 8 \times 20 \div 4 \times 3=37 \end{aligned}$
INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS				
	estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)		use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 12 \div 3=4 \\ & 3 \times 5=14 \end{aligned}$	Use the inverse Use the inverse to check if the following calculations are correct $\begin{aligned} & 23 \times 4=82 \\ & 117 \div 9=14 \end{aligned}$	Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 23 \times 4=92 \\ & 117 \div 9=14 \end{aligned}$	Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 4321 \times 12=51852 \\ & 507 \div 9=4563 \end{aligned}$	Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 2346 \times 46=332796 \\ & 27.74 \div 19=1.46 \end{aligned}$

Number: Multiplication and Division with Reasoning

		Size of an answer Will the answer to the following calculations be greater or less than 80 $\begin{aligned} & 23 \times 3= \\ & 32 \times 3= \\ & 42 \times 3= \\ & 36 \times 2= \end{aligned}$	Size of an answer Will the answer to the following calculations be greater or less than 300 $\begin{aligned} & 152 \times 2= \\ & 78 \times 3= \\ & 87 \times 3= \\ & 4 \times 74= \end{aligned}$	Size of an answer The product of a two digit and three digit number is approximately 6500. What could the numbers be?	Size of an answer The product of a single digit number and a number with two decimal places is 21.34 What could the numbers be?
PROBLEM SOLVING					
solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to mobjects	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
				solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
				solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

Number: Fractions (including Decimals and Percentages) Reasoning

Teaching of Mathematics

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
COUNTING IN FRACTIONAL STEPS					
	Pupils should count in fractions up to 10, starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths		
	Spot the mistake $7,71 / 2,8,9,10$ $81 / 2,8,7,6 \frac{1}{2}$, ... and correct it What comes next? $\begin{aligned} & 51 / 2,61 / 2,71 / 2, \ldots ., \ldots . \\ & 91 / 2,9,81 / 2, \ldots . ., \ldots . . \end{aligned}$	Spot the mistake six tenths, seven tenths, eight tenths, nine tenths, eleven tenths ... and correct it. What comes next? $\begin{aligned} & \text { 6/10, 7/10, 8/10,, } \\ & 12 / 10,11 / 10,, ~, ~ ~ \end{aligned}$	Spot the mistake sixty tenths, seventy tenths, eighty tenths, ninety tenths, twenty tenths ... and correct it. What comes next? 83/100, 82/100, 81/100,,, \qquad 31/100, 41/100, 51/100,,,	Spot the mistake $0.088,0.089,1.0$ What comes next? 1.173, 1.183, 1.193	Spot the mistake Identify and explain mistakes when counting in more complex fractional steps

Number: Fractions (including Decimals and Percentages) Reasoning

RECOGNISING FRACTIONS					
recognise, find and name a half as one of two equal parts of an object, shape or quantity	recognise, find, name and write fractions ${ }^{1} / 3^{\prime}$, ${ }^{1} / 4^{\prime}{ }^{2} / 4$ and $^{3} / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10.	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	
What do you notice? Choose a number of counters. Place them onto 2 plates so that there is the same number on each half. When can you do this and when can't you? What do you notice?	What do you notice? $1 / 4$ of $4=1$ $1 / 4$ of $8=2$ $1 / 4$ of $12=3$ Continue the pattern What do you notice?	What do you notice? $\begin{aligned} & 1 / 10 \text { of } 10=1 \\ & 2 / 10 \text { of } 10=2 \\ & 3 / 10 \text { of } 10=3 \end{aligned}$ Continue the pattern. What do you notice? What about $1 / 10$ of 20 ? Use this to work out 2/10 of 20, etc.	What do you notice? $\begin{aligned} & 1 / 10 \text { of } 100=10 \\ & 1 / 100 \text { of } 100=1 \\ & 2 / 10 \text { of } 100=20 \\ & 2 / 100 \text { of } 100=2 \end{aligned}$ How can you use this to work out $6 / 10$ of 200 ? $6 / 100$ of 200 ?	What do you notice? One tenth of $£ 41$ One hundredth of $£ 41$ One thousandth of $£ 41$ Continue the pattern What do you notice? $\begin{aligned} & 0.085+0.015=0.1 \\ & 0.075+0.025=0.1 \\ & 0.065+0.035=0.1 \end{aligned}$ Continue the pattern for the next five number sentences.	What do you notice? One thousandth of my money is 31 p. How much do I have?

Number: Fractions (including Decimals and Percentages) Reasoning

Teaching of Mathematics

recognise, find and name a quarter as one of four equal parts of an object, shape or quantity		recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators		
True or false? Sharing 8 apples between 4 children means each child has 1 apple.	True or false? Half of $20 \mathrm{~cm}=5 \mathrm{~cm}$ $3 / 4$ of $12 \mathrm{~cm}=9 \mathrm{~cm}$	True or false? $2 / 10$ of $20 \mathrm{~cm}=2 \mathrm{~cm}$ $4 / 10$ of $40 \mathrm{~cm}=4 \mathrm{~cm}$ $3 / 5$ of $20 \mathrm{~cm}=12 \mathrm{~cm}$	True or false? $1 / 20$ of a metre $=20 \mathrm{~cm}$ $4 / 100$ of 2 metres $=40 \mathrm{~cm}$	True or false? 0.1 of a kilometre is 1 m. 0.2 of 2 kilometres is 2 m. 0.3 of 3 Kilometres is 3 m 0.25 of 3 m is 500 cm.

Number: Fractions (including Decimals and Percentages) Reasoning

Number: Fractions (including Decimals and Percentages) Reasoning

Number: Fractions (including Decimals and Percentages) Reasoning

ROUNDING INCLUDING DECIMALS				
		round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
		Do, then explain Circle each decimal which when rounded to the nearest whole number is 5 . $\begin{array}{llll}5.3 & 5.7 & 5.2 & 5.8\end{array}$ Explain your reasoning Top tips Explain how to round numbers to one decimal place? Also see rounding in place value	Do, then explain Circle each decimal which when rounded to one decimal place is 6.2. $\begin{array}{llll}6.32 & 6.23 & 6.27 & 6.17\end{array}$ Explain your reasoning Top tips Explain how to round decimal numbers to one decimal place? Also see rounding in place value	Do, then explain Write the answer of each calculation rounded to the nearest whole number 75.7×59 $7734 \div 60$ 772.4×9.7 $20.34 \times(7.9-5.4)$ What's the same, what's different? ... when you round numbers to one decimal place and two decimal places? Also see rounding in place value

Number: Fractions (including Decimals and Percentages) Reasoning

EQUIVALENCE (INCLUDING FRACTIONS, DECIMALS AND PERCENTAGES)					
	write simple fractions e.g. ${ }^{1} / 2$ of $6=3$ and recognise the equivalence of ${ }^{2} / 4$ and ${ }^{1} / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
	Odd one out. Which is the odd one out in this trio: $\begin{array}{lll}1 / 2 & 2 / 4 & 1 / 4\end{array}$ Why? What do you notice? Find $1 / 2$ of 8 . Find $2 / 4$ of 8 What do you notice?	Odd one out. Which is the odd one out in each of these trios $\begin{array}{lll}1 / 2 & 3 / 6 & 5 / 8\end{array}$ $\begin{array}{lll}3 / 9 & 2 / 6 & 4 / 9\end{array}$ Why? What do you notice? Find $2 / 5$ of 10 Find $4 / 10$ of 10 . What do you notice? Can you write any other similar statements?	Odd one out. Which is the odd one out in each of these trio $\begin{array}{lll}\mathrm{s}^{3} / 4 & 9 / 12 & 4 / 6\end{array}$ 9/12 $\quad 10 / 15 \quad 2 / 3$ Why? What do you notice? Find $4 / 6$ of 24 Find $2 / 3$ of 24 What do you notice? Can you write any other similar statements?	Odd one out. Which is the odd one out in each of these collections of 4 fractions $6 / 10 \quad 3 / 5 \quad 18 / 20 \quad 9 / 15$ $\begin{array}{llll}30 / 100 & 3 / 10 & 6 / 20 & 3 / 9\end{array}$ Why? What do you notice? Find $30 / 100$ of 200 Find $3 / 10$ of 200 What do you notice? Can you write any other similar statements?	Odd one out. Which is the odd one out in each of these collections of 4 fraction $\begin{array}{llll}s^{3} / 4 & 9 / 12 & 26 / 36 & 18 / 24\end{array}$ $\begin{array}{llll}4 / 20 & 1 / 5 & 6 / 25 & 6 / 30\end{array}$ Why? What do you notice? $8 / 5$ of $25=40$ $5 / 4$ of $16=20$ 7/6 of 36-42 Can you write similar statements?
			recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions (e.g. $\left.0.71={ }^{71} /{ }_{100}\right)$ recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} /{ }_{8}$)

Number: Fractions (including Decimals and Percentages) Reasoning
Teaching of Mathematics

Number: Fractions (including Decimals and Percentages) Reasoning

			Explain your thinking Which is more: 20% of 200 or 25% of 180? Explain your reasoning.	starting with the largest. $23 \%, 5 / 8,3 / 5,0.8$
ADDITION AND SUBTRACTION OF FRACTIONS				
	add and subtract fractions with the same denominator within one whole (e.g. $/ /_{7}+{ }^{1} / 7={ }_{7} / 7$)	add and subtract fractions with the same denominator	add and subtract fractions with the same denominator and multiples of the same number recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number (e.g. ${ }^{2} /{ }_{5}+$ $\left.{ }^{4} /{ }_{5}={ }^{6} /{ }_{5}=1^{1} /{ }_{5}\right)$	add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
	What do you notice? $\begin{aligned} & 1 / 10+9 / 10=1 \\ & 2 / 10+8 / 10=1 \\ & 3 / 10+7 / 10=1 \end{aligned}$	What do you notice? $\begin{aligned} & 5 / 5-1 / 5=4 / 5 \\ & 4 / 5-1 / 5=3 / 5 \end{aligned}$	What do you notice? $3 / 4$ and $1 / 4=4 / 4=1$ $4 / 4$ and $1 / 4=5 / 4=11 / 4$ $5 / 4$ and $1 / 4=6 / 4=11 / 2$	Another and another Write down two fractions which have a difference of $12 / \ldots$ and another, ... and another, ...

Number: Fractions (including Decimals and Percentages) Reasoning

		Continue the pattern Can you make up a similar pattern for eighths? The answer is $5 / 10$, what is the question? (involving fractions / operations)	Continue the pattern Can you make up a similar pattern for addition? The answer is $3 / 5$, what is the question? What do you notice? $\begin{aligned} & 11 / 100+89 / 100=1 \\ & 12 / 100+88 / 100=1 \\ & 13 / 100+87 / 100=1 \end{aligned}$ Continue the pattern for the next five number sentences	Continue the pattern up to the total of 2. Can you make up a similar pattern for subtraction? The answer is $12 / 5$, what is the question	Another and another Write down 2 fractionswith a total of 3 4/5. ... and another, ... and another, ...
MULTIPLICATION AND DIVISION OF FRACTIONS					
				multiply proper fractions and mixed numbers by whole numbers, supported by materials	multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. ${ }^{1} / x^{1}{ }^{1} /{ }_{2}=1 / 8$)
					multiply one-digit numbers with up to two decimal places by whole numbers
					divide proper fractions by whole numbers (e.g. ${ }^{1} / 3 \div$ $2={ }^{1} /{ }_{6}$)

Number: Fractions (including Decimals and Percentages) Reasoning

			Continue the pattern $\begin{aligned} & 1 / 4 \times 3= \\ & 1 / 4 \times 4= \\ & 1 / 4 \times 5= \end{aligned}$ Continue the pattern for five more number sentences. How many steps will it take to get to 3? $5 / 3$ of $24=40$ Write a similar sentence where the answer is 56 . The answer is $2 \frac{1}{4}$, what is the question Give your top tips for multiplying fractions.	Continue the pattern $\begin{aligned} & 1 / 3 \div 2=1 / 6 \\ & 1 / 6 \div 2=1 / 12 \\ & 1 / 12 \div 2=1 / 24 \end{aligned}$ What do you notice? $1 / 2 \times 1 / 4=$ The answer is $1 / 8$, what is the question (involving fractions / operations) Give your top tips for dividing fractions.
MULTIPLICATION AND DIVISION OF DECIMALS				
				multiply one-digit numbers with up to two decimal places by whole numbers
		find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths		multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
				identify the value of each digit to three decimal

Number: Fractions (including Decimals and Percentages) Reasoning

				places and multiply and divide numbers by 10 , 100 and 1000 where the answers are up to three decimal places
				associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$)
				use written division methods in cases where the answer has up to two decimal places
		Undoing I divide a number by 100 and the answer is 0.3 . What number did I start with? Another and another Write down a number with one decimal place which when multiplied by 10 gives an answer between 120 and 130. ... and another, ... and another, ...	Undoing I divide a number by 100 and the answer is 0.33 What number did I start with? Another and another Write down a number with two decimal places which when multiplied by 100 gives an answer between 33 and 38 and another, ... and another, ...	Undoing I multiply a number with three decimal places by a multiple of 10 . The answer is approximately 3.21 What was my number and what did I multiply buy? When I divide a number by 1000 the resulting number has the digit 6 in the units and tenths and the other digits are 3 and 2 in the tens and

Number: Fractions (including Decimals and Percentages) Reasoning

				hundreds columns. What could my number have been?
PROBLEM SOLVING				
	solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	solve problems involving numbers up to three decimal places	
		solve simple measure and money problems involving fractions and decimals to two decimal places.	solve problems which require knowing percentage and decimal equivalents of $1 / 2^{\prime}{ }^{1} / 4^{\prime}{ }^{1} / 5_{5^{\prime}}$ ${ }^{2} / 5^{\prime}{ }^{4} / 5$ and those with a denominator of a multiple of 10 or 25 .	

Ratio and Proportion with Reasoning

Statements only appear in Year 6 but should be connected to previous learning, particularly fractions and multiplication and division

Statements only appear in Year 6 but should be connected to previous learning, particularly fractions and multiplication and division					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
					solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
					What else do you know? In a flower bed a gardener plants 3 red bulbs for every 4 white bulbs. How many red and white bulbs might he plant? If she has 100 white bulbs, how many red bulbs does she need to buy? If she has 75 red bulbs, how many white bulbs does she need to buy? If she wants to plant 140 bulbs altogether, how many of each colour should she buy? Do, then explain Purple paint is made from read and blue paint in the ratio of 3:5. To make 40 litres of purple paint how much would I need of each colour? Explain your thinking.
					solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
					What else do you know? 88% of a sum of money $=£ 242$. Make up some other statements. Write real life problems for your number sentences. Undoing I think of a number and then reduce it by 15%. The number I end up with is 306 . What was my original number? In a sale where everything is reduced by 15% I paid the following prices for three items. $£ 255, £ 850, £ 4.25$ What was the original selling price?
					solve problems involving similar shapes where the scale factor is known or can be found
					Unpicking A recipe needs to include three times as much apple than peach. The total weight of apples and peaches in a recipe is 700 grammes. How much apple do I need?

Ratio and Proportion with Reasoning

					solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
				Other possibilities	
				A 50 seater coach travels to the match. Most of the seats are taken. Junior tickets cost $£ 13$ and Adult tickets cost $£ 23$. The only people on the coach are Juniors and Adults. The total amount paid for tickets is approximately $£ 900$ How many people on the coach were adults and how many were juniors?	

Algebra with Reasoning

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
EQUATIONS					
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically
	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction)				find pairs of numbers that satisfy number sentences involving two unknowns
represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction)					enumerate all possibilities of combinations of two variables

Algebra with Reasoning

National Centre
for Excellence in the
Teaching of Mathematics

Connected Calculations $\begin{aligned} & 11=3+8 \\ & 12=4+8 \\ & 13=\square+8 \\ & 14=\square+8 \end{aligned}$ What numbers go in the boxes? Can you continue this sequence of calculations?	Connected Calculations Put the numbers 19, 15 and 4 in the boxes to make the number sentences correct. $\begin{aligned} & \square=\square-\square \\ & \square=\square+\square \end{aligned}$	Connected Calculations Put the numbers $3,12,36$ in the boxes to make the number sentences correct. $\begin{aligned} & \square=\square \times \square \\ & \square=\square \div \square \end{aligned}$	Connected Calculations Put the numbers 7.2, 8, 0.9 in the boxes to make the number sentences correct. $\begin{aligned} & \square=\square \times \square \\ & \square=\square \div \square \end{aligned}$	Connected Calculations The number sentence below represents the angles in degrees of an isosceles triangle. $A+B+C=180 \text { degrees }$ A and B are equal and are multiples of 5. Give an example of what the 3 angles could be. Write down 3 more examples	Connected Calculations p and q each stand for whole numbers. $p+q=1000 \text { and } p \text { is } 150$ greater than q. Work out the values of p and q.	
FORMULAE						
			Perimeter can be expressed algebraically as $2(a+b)$ where a and b are the dimensions in the same unit. (Copied from NSG measurement)		use simple f recognise when to use formul volume of sha (copied from	ulae is possible r area and surement)
			Undoing If the longer length of a rectangle is 13 cm and the perimeter is 36 cm , what is the length of the shorter side? Explain how you got your	Undoing The perimeter of a rectangular garden is between 40 and 50 metres. What could the dimensions of the garden	Undoing The diagram b represents two fields that are other. \qquad Field A	tangular to each Field B

Algebra with Reasoning

National Centre
 for Excellence in the
 Teaching of Mathematics

			answer.	be?	Field A is twice as long as field B but their widths are the same and are 7.6 metres. If the perimeter of the small field is 23 m what is the perimeter of the entire shape containing both fields? If y stands for a number complete the table below What is the largest value of y if the greatest number in the table was 163?
SEQUENCES					
sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening (copied from Measurement)	compare and sequence intervals of time (copied from Measurement) order and arrange combinations of mathematical objects in patterns (copied from Geometry: position and direction)				generate and describe linear number sequences
	True or false? Explain The largest three digit number that can be made from the digits 2,4 and 6 is 264. Is this true or false? Explain your thinking.				Generalising Write a formula for the $10^{\text {th }}$, $100^{\text {th }}$ and nth terms of the sequences below. $\begin{aligned} & 4,8,12,16 \text {......... } \\ & 0.4,0.8,1.2,1.6, \end{aligned}$

Algebra with Reasoning

Measurement with Reasoning

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
COMPARING AND ESTIMATING					
compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] * mass/weight [e.g. heavy/light, heavier than, lighter than] capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using $>$, < and =		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes (also included in measuring) estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids) and capacity (e.g. using water)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres (m^{3}), and extending to other units such as mm^{3} and km^{3}.
Top tips How do you know that this (object) is heavier / longer / taller than this one? Explain how you know.	Top tips Put these measurements in order starting with the smallest. 75 grammes 85 grammes 100 grammes Explain your thinking Position the symbols Place the correct symbol between the measurements >or < 36 cm 63 cm	Top Tips Put these measurements in order starting with the largest. Half a litre Quarter of a litre 300 ml Explain your thinking Position the symbols Place the correct symbol between the measurements >or <	Top Tips Put these amounts in order starting with the largest. Half of three litres Quarter of two litres 300 ml Explain your thinking Position the symbols Place the correct symbols between the measurements > or <	Top Tips Put these amounts in order starting with the largest. $130000 \mathrm{~cm}^{2}$ $1.2 \mathrm{~m}^{2}$ $13 \mathrm{~m}^{2}$ Explain your thinking	Top Tips Put these amounts in order starting with the largest. $100 \mathrm{~cm}^{3}$ $1000000 \mathrm{~mm}^{3}$ $1 \mathrm{~m}^{3}$ Explain your thinking

Measurement with Reasoning

	$\begin{aligned} & 130 \mathrm{ml} \square 103 \mathrm{ml} \\ & \text { Explain your thinking } \end{aligned}$	$306 \mathrm{~cm} \square$ Half a metre $930 \mathrm{ml} \square 1$ litre Explain your thinking	£23.61 2326p 2623p Explain your thinking		
sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
Explain thinking Ask pupils to reason and make statements about to the order of daily routines in school e.g. daily timetable e.g. we go to PE after we go to lunch. Is this true or false?	Undoing The film finishes two hours after it starts. It finishes at 4.30. What time did it start? Draw the clock at the start and the finish of the film.	Undoing A programme lasting 45 minutes finishes at 5.20. At what time did it start? Draw the clock at the start and finish time.	Undoing Imran's swimming lesson lasts 50 mins and it takes 15 mins to change and get ready for the lesson. What time does Imran need to arrive if his lesson finishes at 6.15 pm ?	Undoing A school play ends at 6.45 pm . The play lasted 2 hours and 35 minutes. What time did it start?	Undoing A film lasting 200 minutes finished at 17:45. At what time did it start?

Measurement with Reasoning

What do we do before break time? etc.	Explain thinking The time is $3: 15 \mathrm{pm}$. Kate says that in two hours she will be at her football game which starts at 4:15. Is Kate right? Explain why.	Explain thinking Salha says that 100 minutes is the same as 1 hour. Is Salha right? Explain why.	Explain thinking The time is 10:35 am. Jack says that the time is closer to 11:00am than to 10:00am. Is Jack right? Explain why.	Other possibilities (links with geometry, shape and space) A cuboid is made up of 36 smaller cubes. If the cuboid has the length of two of its sides the same what could the dimensions be? Convince me	Other possibilities (links with geometry, shape and space) A cuboid has a volume between 200 and 250 cm cubed. Each edge is at least 4 cm long. List four possibilities for the dimensions of the cuboid..
MEASURING and CALCULATING					
measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (I / ml)	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
Application (Can be practical) Which two pieces of string are the same length as this book?	Application (Practical) Draw two lines whose lengths differ by 4 cm .	Write more statements (You may choose to consider this practically) If there are 630 ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml	Write more statements One battery weighs the same as 60 paperclips; One pencil sharpener weighs the same as 20 paperclips. Write down some more things you know. How many pencil	Write more statements Mr Smith needs to fill buckets of water. A large bucket holds 6 litres and a small bucket holds 4 litres. If a jug holds 250 ml and a bottle holds 500 ml suggest some ways of using the jug and bottle to	Write more statements Chen, Megan and Sam have parcels. Megan's parcel weighs 1.2 kg and Chen's parcel is 1500 g and Sam's parcel is half the weight of Megan's parcel. Write down some other statements about the

Measurement with Reasoning

National Centre
 for Excellence in the
 Teaching of Mathematics

		to start with? Make up some more questions like this	sharpeners weigh the same as a battery?	fill the buckets.	parcels. How much heavier is Megan's parcel than Chen's parcel?
		measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa
		Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter? $8 \mathrm{~cm} \quad 18 \mathrm{~cm}$ 24 cm 25 cm	Testing conditions If the width of a rectangle is 3 metres less than the length and the perimeter is between 20 and 30 metres, what could the dimensions of the rectangle lobe? Convince me.	Testing conditions Shape A is a rectangle that is 4 m long and 3 m wide. Shape B is a square with sides 3 m . The rectangles and squares are put together side by side to make a path which has perimeter between 20 and 30 m . For example Can you draw some other arrangements where the perimeter is between 20 and 30 metres?	Testing conditions A square has the perimeter of 12 cm . When 4 squares are put together, the perimeter of the new shape can be calculated. For example: What arrangements will give the maximum perimeter?
recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds ($\mathbf{£}$) and pence (p); combine amounts to make a particular value	add and subtract amounts of money to give change, using both $£$ and p in practical contexts			

Measurement with Reasoning

	find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change				
Possibilities Ella has two silver coins. How much money might she have?	Possibilities How many different ways can you make 63p using only 20p, 10p and 1p coins?	Possibilities I bought a book which cost between $£ 9$ and $£ 10$ and I paid with a ten pound note. My change was between 50 p and $£ 1$ and was all in silver coins. What price could I have paid?	Possibilities Adult tickets cost $£ 8$ and Children’s tickets cost $£ 4$. How many adult and children's tickets could I buy for $£ 100$ exactly? Can you find more than one way of doing this?		

Measurement with Reasoning

National Centre
for Excellence in the
Teaching of Mathematics

Measurement with Reasoning

					See also Geometry Properties of Shape
TELLING THE TIME					
tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks	read, write and convert time between analogue and digital 12 and 24-hour clocks (appears also in Converting)		
recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)			
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Converting)	solve problems involving converting between units of time	

Measurement with Reasoning

	Working backwards Draw hands on the clock faces to show when break started and when it finished 15 minutes later at 10:35.	Working backwards Tom's bus journeytakes half an hour. He arrives at his destination at 9:25. At what time did his bus leave? $9: 05 \quad 8: 55 \quad 8: 45$	Working backwards Put these times of the day in order, starting with the earliest time. A: Quarter to four in the afternoon B: 07:56 C : six minutes to nine in the evening D: 14:36	Working backwards Put these lengths of time in order starting with the longest time. 105 minutes 1 hour 51 minutes 6360 seconds	
CONVERTING					
	know the number of minutes in an hour and the number of hours in a day. (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
			read, write and convert time between analogue and digital 12 and 24-hour clocks (appears also in Converting)	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Measuring and Calculating)
			solve problems involving converting from hours to	understand and use equivalences between	convert between miles and kilometres

Measurement with Reasoning
National Centre
for Excellence in the
Teaching of Mathematics

Geometry: Properties of Shapes with Reasoning

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
IDENTIFYING SHAPES AND THIER PROPERTIES					
recognise and name common 2-D and 3-D shapes, including: * 2-D shapes [e.g. rectangles (including squares), circles and triangles] * 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line		identify lines of symmetry in 2-D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2-D representations	recognise, describe and build simple 3-D shapes, including making nets (appears also in Drawing and Constructing)
	identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and know
	identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]				the radius
What's the same, what's different? Find a rectangle and a triangle in this set of shapes. Tell me one thing that's the same about them. Tell me one thing that is different about them.	What's the same, what's different? Pick up and look at these 3-D shapes. Do they all have straight edges and flat faces? What is the same and what is different about these shapes?	What's the same, what's different? What is the same and different about these three2-D shapes? \square	What's the same, what's different? What is the same and what is different about the diagonals of these 2-D shapes?	What's the same, what's different? What is the same and what is different about the net of a cube and the net of a cuboid?	What's the same, what's different? What is the same and what is different about the nets of a triangular prism and a square based pyramid?

Geometry: Properties of Shapes with Reasoning

Visualising Put some shapes in a bag. Find me a shape that has more than three edges.	Visualising In your head picture a rectangle that is twice as long as it is wide. What could its measurements be?	Visualising I am thinking of a 3dimensional shape which has faces that are triangles and squares. What could my shape be?	Visualising Imagine a square cut along the diagonal to make two triangles. Describe the triangles. Join the triangles on different sides to make new shapes. Describe them. (you could sketch them) Are any of the shapes symmetrical? Convince me.	Visualising I look at a large cube which is made up of smaller cubes. If the larger cube is made up of between 50 and 200 smaller cubes what might it look like?	Visualising Jess has 24 cubes which she builds to make a cuboid. Write the dimensions of cuboids that she could make. List all the possibilities.
DRAWING AND CONSTRUCTING					
		draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in	complete a simple symmetric figure with respect to a specific line of symmetry	draw given angles, and measure them in degrees (i)	draw 2-D shapes using given dimensions and angles
					recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)
		Other possibilities Oneface of a 3-D shape looks like this. \square What could it be? Are there any other possibilities?	Other possibilities Can you draw a non-right angled triangle with a line of symmetry? Are there other possibilities.	Other possibilities Here is one angle of an isosceles triangle. You will need to measure the angle accurately. What could the other angles of the triangle be? Are there any other possibilities?	Other possibilities If one angle of an isosceles triangle is 36 degrees. What could the triangle look like - draw it. Are there other possibilities. Draw a net for a cuboid that has a volume of 24 cm^{3}.

Geometry: Properties of Shapes with Reasoning

COMPARING AND CLASSIFYING					
	compare and sort common 2-D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
				distinguish between regular and irregular polygons based on reasoning about equal sides and angles	
True or false? All 2-D shapes have at least 4 sides	Always, sometimes, never Is it always, sometimes or nerver true that when you fold a square in half you get a rectangle.	Always, sometimes, never Is it always, sometimes or never that all sides of a hexagon are the same length.	Always, sometimes, never Is it always, sometimes or never true that the two diagonals of a rectangle meet at right angles.	Always, sometimes, never Is it always, sometimes or never true that the number of lines of reflective symmetry in a regular polygon is equal to the number of its sides n.	Always, sometimes, never Is it always, sometimes or never true that, in a polyhedron, the number of vertices plus the number of faces equals the number of edges.
Other possibilities Can you find shapes that can go with the set with this label?	Other possibilities Can you find shapes that can go with the set with this label?	Other possibilities Can you find shapes that can go with the set with this label?	Other possibilities Can you show or draw a polygon that fits both of these criteria? What do you look for?	Other possibilities A rectangular field has a perimeter between 14 and 20 metres . What could its dimensions	Other possibilities Not to scale

Geometry: Properties of Shapes with Reasoning

"Have straight sides"	"Have straight sides and all sides are the same length"	"Have straight sides that are different lengths."	"Has exactly two equal sides." "Has exactly two parallel sides."	be?	The angle at the top of this isosceles triangle is 110 degrees. What are the other angles in the triangle?
ANGLES					
		recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
		identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: * angles at a point and one whole turn (total 360°) * angles at a point on a straight line and $1 / 2 a$ turn (total 180°) * other multiples of 90°	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
		identify horizontal and vertical lines and pairs of perpendicular and parallel lines			
		Convince me Which capital letters have perpendicular and / or parallel lines? Convince me.	Convince me Ayub says that he can draw a right angled triangle which has another angle which is obtuse.	Convince me What is the angle between the hands of a clock at four o clock? At what other times is the	Convince me

Geometry: Properties of Shapes with Reasoning

National Centre

| | | | Is he right?
 Explain why. | angle between the hands
 the same?
 Convince me |
| :--- | :--- | :--- | :--- | :--- | :--- |

Geometry: Position and Direction with Reasoning

National Centre
 for Excellence in the
 Teaching of Mathematics

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
POSITION, DIRECTION AND MOVEMENT					
describe position, direction and movement, including half, quarter and three-quarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants)
			describe movements between positions as translations of a given unit to the left/right and up/down		draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
			plot specified points and draw sides to complete a given polygon		
Working backwards					
The shape below was turned three quarter of a full turn and ended up looking like this. What did it look like when it started? (practical)	If I face forwards and turn three quarter turns clockwise then a quarter turn anti-clockwise describe my finishing position.	If I make the two opposite sides of a square 5 cm longer the new lengths of those sides are 27 cm . What was the size of my original square? What is the name and size of my new shape?	Here are the co-ordinates of corners of a rectangle which has width of 5 . $(7,3)$ and $(27,3)$ What are the other two co-ordinates?	A square is translated 3 squares down and one square to the right. Three of the coordinates of the translated square are: $(3,6) \quad(8,11) \quad(8,6)$ What are the co-ordinates of the original square?	Two triangles have the following co-ordinates: Triangle A: $(3,5) \quad(7,5) \quad(4,7)$ Triangle B: $(3,1)(7,1) \quad(4,3)$ Describe the translation of triangle A to B and then from B to A.

Geometry: Position and Direction with Reasoning

	PATTERN							
	order and arrange combinations of mathematical objects in patterns and sequences							
	What comes next? ExCOOC Explain why							

Statistics with Reasoning

National Centre
 for Excellence in the
 Teaching of Mathematics

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
INTERPRETING, CONSTRUCTING AND PRESENTING DATA					
	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
	ask and answer questions about totalling and comparing categorical data				
	True or false? (Looking at a simple pictogram) "More people travel to work in a car than on a bicycle". Is this true or false? Convince me. Make up you own 'true/false' statement about the pictogram	True or false? (Looking at a bar chart) "Twice as many people like strawberry than lime". Is this true or false? Convince me. Make up your own 'true/false' statement about the bar chart.	True or false? (Looking at a graph showing how the class sunflower is growing over time) "Our sunflower grew the fastest in July". Is this true or false? Convince me. Make up your own 'true/false' statement about the graph.	True or false? (Looking at a train time table) "If I want to get to Exeter by 4 o'clock this afternoon, I will need to get to Taunton station before midday". Is this true or false? Convince me. Make up your own 'true/false' statement about a journey using the timetable.	True or false? (Looking at a pie chart) "More than twice the number of people say their favourite type of T.V. programme is soaps than any other" Is this true or false? Convince me. Make up your own 'true/false' statement about the pie chart.

Statistics with Reasoning

National Centre
 for Excellence in the
 Teaching of Mathematics

	What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each other	What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each other	What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each other	What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each other	What's the same, what's different? Pupils identify similarities and differences between different representations and explain them to each other
SOLVING PROBLEMS					
		solve one-step and twostep questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average
	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. (see above)	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. (see above)	Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. (see above)	Create a questions Make up a set of five numbers with a mean of 2.7 Missing information The mean score in six test papers in a spelling test of 20 questions is 15 .Five of the scores were 131217 1816 What was the missing score?

